Preservation of tropomyosin-related kinase B (TrkB) signaling by sodium orthovanadate attenuates early brain injury after subarachnoid hemorrhage in rats.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Recent studies reported that apoptosis was involved in the pathogenesis of early brain injury after subarachnoid hemorrhage (SAH). The aim of this study was to examine whether sodium orthovanadate (SOV) prevents post-SAH apoptosis by modulating growth factors and its downstream receptor tyrosine kinases. Method- Rats were operated on with the endovascular perforation model. SAH animals were treated with vehicle, 3 mg/kg and 10 mg/kg SOV, and evaluated regarding neurofunction and brain edema. The expression of growth factors such as mature brain-derived neurotrophic factor, insulin-like growth factor-1, and vascular endothelial growth factor and phosphorylation of tropomyosin-related kinase B, which is a receptor tyrosine kinase for brain-derived neurotrophic factor and the downstream pathway in antiapoptosis, was examined by Western blot analysis. Neuronal cell death was measured with terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling staining. We also administered K252a, a tropomyosin-related kinase B antagonist, to examine the mechanisms for neuroprotective effects by SOV. RESULTS SOV significantly improved neurofunction and reduced brain edema after SAH. SOV increased mature brain-derived neurotrophic factor and prevented post-SAH tropomyosin-related kinase B inactivation and caspase-3 activation, resulting in attenuation of neuronal cell death in the cortex and hippocampal CA1 region. Preinjection of K252a abolished the beneficial effects of SOV. CONCLUSIONS The current study showed that brain-derived neurotrophic factor-induced tropomyosin-related kinase B activation by SOV was necessary for protection against early brain injury after SAH.
منابع مشابه
Ginkgo biloba extract protects early brain injury after subarachnoid hemorrhage via inhibiting thioredoxin interacting protein/NLRP3 signaling pathway
Objective(s): To investigate the effect of Ginkgo biloba extract EGb761 in early brain injury (EBI) after subarachnoid hemorrhage (SAH) and its mechanism. Materials and Methods: The SAH rat model was constructed and pre-treated with EGb761.The neurological function, severity of SAH, water content of brain tissue, damage degree of the blo...
متن کاملP22: The Association between TrkB Signaling Pathway and NMDARs in LTP Induction
Long-term potentiation (LTP) is a biological process of learning and memory after a high-frequency train of electrical stimulations. By binding of brain-derived neurotrophic factor (BDNF) to Tropomyosin receptor kinase B (TrKB) receptors in postsynaptic neurons, tyrosine kinase Fyn is bound to these receptors and hereby plays a mediating role to binding and activation of N-methyl-D-aspartic aci...
متن کاملP3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory
Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...
متن کاملBrain‐derived neurotrophic factor attenuates doxorubicin‐induced cardiac dysfunction through activating Akt signalling in rats
The clinical application of doxorubicin (Dox) is limited by its adverse effect of cardiotoxicity. Previous studies have suggested the cardioprotective effect of brain-derived neurotrophic factor (BDNF). We hypothesize that BDNF could protect against Dox-induced cardiotoxicity. Sprague Dawley rats were injected with Dox (2.5 mg/kg, 3 times/week, i.p.), in the presence or absence of recombinant B...
متن کاملSmall molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents.
Brain-derived neurotrophic factor (BDNF) activates the receptor tropomyosin-related kinase B (TrkB) with high potency and specificity, promoting neuronal survival, differentiation, and synaptic function. Correlations between altered BDNF expression and/or function and mechanism(s) underlying numerous neurodegenerative conditions, including Alzheimer disease and traumatic brain injury, suggest t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 42 2 شماره
صفحات -
تاریخ انتشار 2011